Solutions to the assignment problem balance tradeoffs between local and catastrophic errors

W. Jeffrey Johnston^{1,2} and David J. Freedman^{1,2,3} Graduate Program in Computational Neuroscience
Department of Neurobiology
Grossman Institute for Neuroscience, Quantitative Biology, and Human Behavior The University of Chicago, Chicago, IL, USA

Conclusions

The assignment problem can only be solved if distributed representations have some overlapping information. However, overlapping information is inefficient. The brain must navigate a tradeoff between **redundancy for solving the assignment** problem and efficiency for representing stimulus information.

- More overlapping features increase redundancy at the cost of efficiency.
- Asymmetric feature representations increase efficiency at the cost of redundancy.
- Human behavior is consistent with our solution.

Predictions for experimental data

How is total distortion minimized?

In many cases, the optimal solution leverages both tradeoffs between redundancy and efficiency.

References and acknowledgments

We are grateful for funding from:

- NIH F31EY029155
- NIH R01EY019041
- Pritzker Fellowship
- [1] Treisman (1996) *Curr. Op. in Neurobiol.*
- [2] Cover & Thomas (2012)
- [3] Weisstein. "Square Line Picking." MathWorld
- [4] Weisstein. "Cube Line Picking." *MathWorld*

contact: wjeffreyjohnston@gmail.com